Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.11.14.514089

RESUMEN

General approaches for designing sequence-specific peptide binding proteins would have wide utility in proteomics and synthetic biology. Although considerable progress has been made in designing proteins which bind to other proteins, the general peptide binding problem is more challenging as most peptides do not have defined structures in isolation, and to offset the loss in solvation upon binding the protein binding interface has to provide specific hydrogen bonds that complement the majority of the buried peptide’s backbone polar groups ( 1 – 3 ). Inspired by natural repeat protein-peptide complexes, and engineering efforts to alter their specificity ( 4 – 11 ), we describe a general approach for de novo design of proteins made out of repeating units that bind peptides with repeating sequences such that there is a one to one correspondence between repeat units on the protein and peptide. We develop a rapid docking plus geometric hashing method to identify protein backbones and protein-peptide rigid body arrangements that are compatible with bidentate hydrogen bonds between side chains on the protein and the backbone of the peptide ( 12 ); the remainder of the protein sequence is then designed using Rosetta to incorporate additional interactions with the peptide and drive folding to the desired structure. We use this approach to design, from scratch, alpha helical repeat proteins that bind six different tripeptide repeat sequences--PLP, LRP, PEW, IYP, PRM and PKW--in near polyproline 2 helical conformations. The proteins are expressed at high levels in E. coli, are hyperstable, and bind peptides with 4-6 copies of the target tripeptide sequences with nanomolar to picomolar affinities both in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including a ladder of protein sidechain to peptide backbone hydrogen bonds. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating sequences, and for naturally occuring proteins containing disordered regions. Our approach provides a general route to designing specific binding proteins for a broad range of repeating and non-repetitive peptide sequences.

2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.08.03.231340

RESUMEN

There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins ([~]18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA